Modelling of low-pH cement degradation in a KBS-3 HLNWrepository

F. Grandia, J. Salas, J. Molinero, D. Arcos

AMPHOS XXI Consulting

Motivation

AMPHOS²¹

J Low-pH cements.

- • Why to use low-pH cements in radioactive waste repositories:
	- •Aqueous speciation of silicon at pH>10 enhances solubility of clay barrier.
	- •Low-pH cements may supply 50% less hydroxyls than conventional OPC.

Tunnel plugs in HLNW repository, Sweden

Conceptual and data uncertainties

AMPHOS²¹

- Modelling cement degradation.
	- • Predictive modelling of the cement (CSH gels) dissolution is required to evaluate the pH evolution of porewater.

Open issues

Treatment of CSH \rightarrow Pure phases vs. Solid solutions

Kinetics of CSH \rightarrow Rates of precipitation/dissolution of

intermediate phases

Diffusion coefficients in cement porewater

Secondary precipitates \rightarrow Ettringite, calcite, silica, …

AMPHOS²¹

- CSH dissolution/precipitation approaches.
	- • A number of approaches have been developed to implement the incongruent dissolution of cements in reactive transport codes.

- • Local equilibrium approach 1. Thermodynamic equilibrium with pure solid phases.
	- • Dissolution (sometimes using kinetic laws) of CSH-like crystalline phases (tobermorite, jennite, …) and precipitation of secondary phases.
	- •*Flaws:* inability to model incongruent dissolution.

AMPHOS²¹

CSH dissolution approaches

- • Local equilibrium approach 2. Thermodynamic equilibrium with solid solutions.
	- • Dissolution of CSH phases with initial specified Ca/Si ratio. Arbitrary end members, not necessarily present in the system. Formation of new CSH with different Ca/Si ratio. Ability to reproduce incongruent dissolution using nonideal SS.
	- •*Flaws:* Instantaneous re-equilibration of the SS with the fluid (Nernst-Berthelot approach).

AMPHOS²¹

CSH dissolution approaches

- • Kinetic precipitation/dissolution of CSH solid solutions (Lichtner and Carey, 2007).
	- • Implementation of the solid solution theory but using a discrete number of intermediate solids. Dissolution/precipitation is governed by (irreversible) kinetics (Doerner and Hoskins approach). Incongruent dissolution using nonideality terms.
	- •*Flaws:* Lack of kinetic data for many CSH phases.

 A^{21}

AMPHOS²¹

- Examples: CSH dissolution using non-ideaI solid solutions.
	- • A classic example of this kind of approach is found in Berner (1988, 1990 and 1992).

AMPHOS²¹

Examples: CSH dissolution using non-ideaI solid solutions.

- •Variable end members depending on Ca/Si ratios in CSH.
- •For Ca/Si>1.5, portlandite diss. controls the chemistry.
- •• For Ca/Si>1, portlandite and $\text{CaH}_{2}\text{SiO}_{4}$ have commonly been selected as end members of solid solution (Berner, 1990; Börjesson et al., 1997).
- • For Ca/Si<1, different SS models have been proposed with different end me<u>mber:</u> CaH₂SiO₄ – SiO₂ (Berner, 1992).
- •• For Ca/Si>1.5 to \leq 1, Ca(OH) $_2$ -SiO $_2$ (Sugiyama & Fujita, 2006 and Carey & Litchner, 2007).

Low-pH cements

CSH approach comparison

- **AMPHOS**²¹ Implementation of CSH dissolution using non-ideaI solid solutions in reactive transport codes.
	- - • Models covering the whole Ca/Si
			- \rightarrow Test the low-pH cement alteration
			- \rightarrow Solid solution end-members: Ca(OH) $_2$ and SiO $_2$

 $\textit{Ca(OH)}_{2}, \left[\textit{Ca(OH)}_{2}\right]_{x} \cdot \left[\textit{SiO}_{2}\right]_{1-x}, \!\!,\!\!,\!\!,\!\!,\!\!,\!\! \left[\textit{SiO}_{2}\right]_{x}$

- •**Model of Sugiyama & Fujita (2006)**
- •**Model of Carey & Lichtner (2007)**

CSH approach comparison

AMPHOS²¹

Data from Greenberg & Chang (1965) and Chen et al. (2004) in a Lippmann diagram.

Non-ideal SS. Carey & Lichtner (2007). Non-ideality parametres: a₀= -29.67, a₁= 0.28, a₂= -0.0032

Non-ideal SS. Sugiyama & Fujita (2006). Conditional solubility constants

CSH approach comparison

AMPHOS²¹

Calculated logK:

Cement degradation model: The system

CSH degradation: Reactive transport modelling

AMPHOS²¹

- •1D
- •Granitic, diluted water (pH=7.9; I=2.6×10-2M)
- •Non-reactive backfill
- •Initial CSH composition: 50% volume, Ca/Si=2.85
- •• Molar volume: 160 cm³/mol
- •Porosity: 12.5%

Cement degradation model: The code

AMPHOS²¹

Numerical tool

Multiphase flow and thermomechanics

•• RCB (Saaltink et al., 2005) → RETRASO + CodeBright

Reactive transport of solutes

- Main capabilities:
- •Multiphase flow modelling (liquid and/or gas).
- •Heat flow modelling.
- • Simulation of solute transport by advection, dispersion and diffusion in gas and liquid phase.
- \bullet **Simulation of chemical reactions, including solid solutions**.
- • Simulation of the effects of precipitation and dissolution of mineral phases on porosity and permeability.

Numerical tool

•• RETACO (Saaltink et al., 2005) → RETRASO + CodeBright

Mineral dissolution/precipitation is treated following kinetic laws. A^n

$$
r_{m} = \sigma_{m} \zeta_{m} \exp\left(\frac{E_{a,m}}{RT}\right) \sum_{k=1}^{N_{k}} k_{mk} \prod_{i=1}^{N_{s}} a_{i}^{P_{mki}} \left(\Omega_{m}^{\theta_{mk}} - 1\right)^{\eta_{mk}}
$$

Uncertainties: dissolution/precipitation rates for CSH, molar volumes for \mathbf{A}^n intermediate solid solutions, diffusion coefficients, ...

Cement degradation model: Comparison

 A^{21}

AMPHOS²¹

CSH degradation: Carey & Lichtner (2007). Results

Experimental data from Chen et al. (2004) and Greenberg and Chang (1965)

Cement degradation model: Comparison

AMPHOS²¹

CSH degradation: Sugita & Fujiyama (2006). Results

Cement degradation model: Comparison

AMPHOS²¹

CSH degradation: Carey & Lichtner (2007). Results

- • The Carey & Lichtner approach reproduces well the degradation of CSH in the **Ca/Si range from 3 to 1**.
- • At lower ratios, the model does not fit much with experimental data, as already suggested by the Lippmann diagrams.

CSH degradation: Sugiyama & Fujita (2006). Results

- • The Sugiyama and Fujita (2006) approach reproduces well the changes in **CSH composition in the range of Ca/Si<1**, which are characteristic of low pH cements.
- • Aqueous calcium seems to be overpredicted in the simulations compared with experimental data. Including **precipitation of calcite**, the fit is better. However, it is not clear the precipitation of this mineral during the experiments.

CSH degradation: Carey & Lichtner (2007). Effect of porosity changes on hydraulic properties.

- • Uncertainties:
	- \rightarrow Which are the molar volumes of the intermediate CSH phases?
	- \rightarrow And the reactive areas?

The final results from modelling are strongly dependent on these parameters.

AMPHOS²¹

CSH molar volumes

AMPHOS

300Xonotlite280 **/mol)** Tobermorite 260 Decreasing Ca/Si ratio lead to **Molar volume (cm3** 240 **Hillebrandite** increasing molar volumes. Is this 220 200 meaning that CSH degradation lead **Foshagite** 180 to reducing porosity? 160 140 Afwillite1201000.0 0.5 1.0 1.5 2.0 2.5**Ca/Si**0**) Net volume increase (cm3 Hillebrandite** -5**Afwillite** Ca leaching let to a a decrease of -10 Foshagite net volume in the reaction!!!-15 But there is still an unknown on the -20behaviour of CSH gels. **Xonotlite** -25**Tobermorite** We are considering a single value -30for the molar volume of different 0.0 0.5 1.0 1.5 2.0 2.5**Ca/Si** CSH phases: 160 cm 3/mol A^{21}

Cement degradation: porosity changes

AMPHOS²¹

CSH degradation: Carey & Lichtner (2007). Effect of porosity changes on hydraulic properties.

Cement degradation: CSH behaviour

AMPHOS²¹

The net CSH pool results in a larger dissolution when porosity has not been updates in transport processes

Final remarks

- • Among the CSH dissolution/precipitation approaches, the ones from Sugiyama & Fujita (2006) and Carey & Litchner (2007) are the most consistent from thermodynamic and experimental point of view.
- • The approach from Sugiyama & Fujita (2006) seems to better reproduce experimental data for low-pH cement.
- Porosity updates in reactive transport models is very relevant and can result in substantial errors if not considered, despite the large uncertainty in CSH properties (molar volumes and reactive surface).
- • Further work is envisaged to consider the long term evolution of low-pH cements in the KBS-3 repository by considering the presented approach.